PyTorch 1.4.0 ออกแล้ว

PyTorch เวอร์ชัน 1.4.0 ออกแล้ว ใน Release นี้จะเป็นการเน้นพัฒนาในส่วน JIT, ONNX, Distributed, Performance และ Eager Frontend เป็นหลัก ในส่วน Experimental มีการพัฒนาปรับปรุงในหลายเรื่อง Mobile และ Quantization รวมถึง Experimental Feature ใหม่ เช่น RPC-Based Model Parallel Distributed Training และ Language Bindings สำหรับภาษา Java (Inference เท่านั้น)

TensorFlow.js converter คืออะไร สอน tensorflowjs_converter แปลงโมเดล Pre-trained ใน Python เป็น JavaScript JSON ไว้ใช้ใน TensorFlow.js – tfjs ep.9

เนื่องจากใน Web Browser มีทรัพยากรจำกัด การที่เราจะใช้ TensorFlow.js เทรนโมเดลตั้งแต่ต้น จะทำให้เสียเวลาค่อนข้างมาก ในการใช้งาน TensorFlow.js ส่วนใหญ่ เราจึงจะต้องการเทรนโมเดล ด้วยภาษา Python บน Cloud หรือ เครื่อง Server ขนาดใหญ่ ที่มี GPU ความเร็วสูง เมื่อเรียบร้อยแล้ว แล้วนำโมเดลนั้นมาแปลง Convert เพื่อไป Load ใช้งานบน Web Browser รัน JavaScript อีกทีหนึ่ง

TensorFlow.js คืออะไร สอน TensorFlow.js สร้างโมเดล แบบง่าย 1 Dense Layer เริ่มต้นเทรน Machine Learning เส้นตรง Linear Regression ด้วย SGD – tfjs ep.1

ในการสร้างโมเดล Machine Learning ที่สามารถ Predict ได้อย่างถูกต้อง แม่นยำ อีกเรื่องที่เราควรคำนึงถึงคือ สุดท้ายแล้วจุดหมายปลายทางนั้น โมเดลจะถูกนำไป Deploy ที่ไหน ไม่ว่าจะเป็นบน Web Browser, Server, มือถือ, Edge Device, IoT, etc. ใน ep นี้ เราจะมาเรียนรู้ TensorFlow.js ซึ่งเป็น Machine Learning Framework สำหรับภาษา JavaScript จาก Google ที่สามารถรันได้ทั้งใน Web Browser และ บน Server ผ่าน Node.js

Stop Words คืออะไร ใน Natural Language Processing – NLP ep.2

Natural Language Processing (NLP) ในสมัยก่อนยุค Deep Learning เป็นที่นิยม นักวิจัยมักจะใช้วิธี Hand Engineer กับข้อมูล ในงาน NLP จะมีการเขียนโปรแกรมผูก Logic กฏระเบียบ ไวยากรณ์ ไว้หลายอย่างในโปรแกรม มีการตัดสินใจกำหนด Assumption / Bias หลายอย่าง หนึ่งในนั้นคือ Stop Words ตามรายการที่กำหนด สามารถตัดทิ้งได้ ไม่สำคัญกับความหมายของเนื้อหา ทำให้ลดจำนวนคำศัพท์ ลดความซับซ้อนของโปรแกรมลง

Partial Function คืออะไร สอนเขียน Partial Function ตัวอย่างการใช้งาน functools.partial ในภาษา Python – Python ep.8

Partial Function คือ การสร้างฟังก์ชันใหม่ ขึ้นมาจากฟังก์ชันที่มีอยู่ โดย Fix Parameter ส่วนหนึ่งไว้ ทำให้เราได้ฟังก์ชันใหม่ที่ต้องการ Parameter น้อยลง ทำให้ Signature ของฟังก์ชันดูเรียบง่ายขึ้นกว่าเดิม

TensorFlow 2.0.0 ออกแล้ว

หลังจากที่ Google ปล่อย TensorFlow Release 2.0.0-rc2 มาเมื่อสัปดาห์ก่อน วันนี้ก็ได้ฤกษ์ปล่อยตัวจริง ก่อนงาน TensorFlow World ที่จะจัดขึ้นปลายเดือนตุลานี้ TensorFlow 2.0.0 Release ออกแล้ว TF2.0 ออกแบบโดยลดความซับซ้อนลง เน้นให้ใช้งานง่าย และ Integrate กับ Keras อย่างแนบแน่น TF2.0 มีฟีเจอร์ใหม่ ๆ อย่างเช่น

ทำไมต้อง Vectorization เปรียบเทียบความเร็ว คูณเมตริกซ์ Matrix Multiplication (Dot Product) ด้วยอัลกอริทึม Vectorization และวน Loop – Tensor ep.3

จาก ep ที่แล้ว ที่เราเรียนรู้ถึงคุณสมบัติพิเศษ ของ Tensor ที่จะมาช่วยในการคำนวนต่าง ๆ เมื่อเรามองเจาะลึกเข้าไปภายในของ Deep Neural Network เราจะพบว่าในขณะที่เราเทรน หรือขณะใช้งานโมเดลก็ตาม Mathematical Operations การดำเนินการทางคณิตศาสตร์ส่วนใหญ่ที่เกิดขึ้นก็คือ การคูณเมตริกซ์ โดยเฉพาะการคูณเมตริกซ์ (Matrix Multiplication) แบบ Dot Product การคูณเมตริกซ์ที่รวดเร็วแม่นยำ มีผลต่อการทำงานของ Neural Network เป็นอย่างมาก

Enable Notifications    Ok No thanks