สอน PyTorch reshape, squeeze, unsqueeze, flatten จัดการ Shape ของ Tensor หลายมิติ – Tensor ep.2

ใน ep ที่แล้วเราได้เรียนรู้คุณสมบัติพิเศษของ Tensor ที่มีประโยชน์ในการทำ Operation คณิตศาสตร์ ซึ่งเป็นการกระทำกับข้อมูลใน Tensor แต่ใน ep นี้เราจะมาเจาะลึกลงไปถึงเรื่องการจัดการ รูปร่าง (Shape) หรือ มิติ (Dimension) ของ Tensor โดยที่ข้อมูลภายใน Tensor ทั้งหมดยังเหมือนเดิม จำนวน Element ใน Tensor ยังเท่าเดิม ไม่มีการแก้ไขข้อมูลใด ๆ

ทำไมต้อง Vectorization เปรียบเทียบความเร็ว คูณเมตริกซ์ Matrix Multiplication (Dot Product) ด้วยอัลกอริทึม Vectorization และวน Loop – Tensor ep.3

จาก ep ที่แล้ว ที่เราเรียนรู้ถึงคุณสมบัติพิเศษ ของ Tensor ที่จะมาช่วยในการคำนวนต่าง ๆ เมื่อเรามองเจาะลึกเข้าไปภายในของ Deep Neural Network เราจะพบว่าในขณะที่เราเทรน หรือขณะใช้งานโมเดลก็ตาม Mathematical Operations การดำเนินการทางคณิตศาสตร์ส่วนใหญ่ที่เกิดขึ้นก็คือ การคูณเมตริกซ์ โดยเฉพาะการคูณเมตริกซ์ (Matrix Multiplication) แบบ Dot Product การคูณเมตริกซ์ที่รวดเร็วแม่นยำ มีผลต่อการทำงานของ Neural Network เป็นอย่างมาก

เทนเซอร์ Tensor คืออะไร NumPy Array, Matrix, Vector คืออะไร เรียนรู้วิธีใช้งาน Element-wise, Broadcasting – Tensor ep.1

ในการเรียนรู้ Neural Network เราจะพบเจอโค้ดที่ใช้ List, Vector, NumPy Array ไปจนถึง High-Order Tensor หมายถึง Array ที่มีมากกว่า 2 มิติขึ้นไป เช่น 3 มิติ 4 มิติ หรือ 5 มิติ จนเป็นเรื่องธรรมดา ใน ep นี้เราจะมาเรียนรู้การใช้งาน Tensor ทำความเข้าใจ element-wise, broadcasting operations

สอน Machine Learning วิเคราะห์ข้อมูลแบบ Time Series Forecasting พยากรณ์ยอดขายร้านขายยา Rossmann ด้วย Deep Neural Network – Tabular Data ep.3

จาก ep ที่แล้วที่เราเรียนรู้เรื่อง Feature Engineering แบบ Basic กันไปแล้ว ใน ep นี้เราจะมาศึกษาข้อมูลที่เราพบบ่อย ๆ ในการทำงานอีกเช่นกัน คือ ข้อมูลแบบ Time Series เราจะสอนโมเดล Machine Learning ให้เรียนรู้จากข้อมูล Time Series ได้อย่างไร ให้ Forecast พยากรณ์ยอดขายร้านขายยา Rossmann ได้ความแม่นยำมากที่สุด และจำเป็นต้องใช้ Deep Neural Network แบบ Recurrent Neural Network (RNN) หรือไม่

Activation Function คืออะไร ใน Artificial Neural Network, Sigmoid Function คืออะไร – Activation Function ep.1

ในสมองของมนุษย์คนหนึ่ง จะประกอบด้วยหน่วยเล็ก ๆ เรียกว่า นิวรอน (Neuron) จำนวนประมาณ 8 หมื่น 6 พันล้านนิวรอน ดังรูปด้านบน และแต่ละนิวรอนก็จะเชื่อมต่อโยงใยกันด้วยเส้นประสาทเรียกว่า ไซแนปส์ (Synapse) รวมแล้วประมาณ 1 พันล้านล้านไซแนปส์ ซึ่งนักวิทยาศาสตร์คอมพิวเตอร์ได้นำมาเป็นแนวคิดในการออกแบบ Artificial Neural Network

Visualization ภายในโมเดล Deep Neural Network แสดงผลการเทรน Deep Learning ด้วย Tensorboard ep.1

ตามปกติเราจะคิดว่า Deep Neural Network เป็นเหมือน Black Box หรือกล่องดำ ที่เราไม่สามารถจะเข้าใจการทำงานภายในได้ Tensorboard คือเครื่องมือที่จะช่วยให้เราส่องทะลุเข้าไปเห็นถึงการทำงานภายในของโมเดล ตั้งแต่การเทรน Deep Learning, Metrics, Gradient, Embedding, Optimization, Etc. ให้เราเห็นภาพ และเข้าใจมากขึ้น ช่วยให้การ Debug, Hyperparameter Tuning ทำได้ง่ายขึ้น

ตัวอย่างการใช้งาน Machine Learning การประยุกต์ใช้ Deep Learning กับข้อมูลแบบตาราง – Tabular Data ep.1

ใน ep ก่อน ๆ เราได้เห็นตัวอย่างการนำ Machine Learning, Deep Learning มาประยุกต์ใช้งานเกี่ยวกับวิเคราะห์รูปภาพ วิเคราะห์ข้อความ ทั้งหมดถือว่าเป็นข้อมูลแบบ Unstructure Data แต่งานประมวลผลข้อมูลส่วนใหญ่ในปัจจุบันจะเป็น ข้อมูลแบบมีโครงสร้าง Structure Data เช่น ตาราง เป็นหลัก แล้วเราจะนำ Deep Learning มาประยุกต์ใชักับงานเหล่านี้อย่างไร

Multi-label Image Classification จำแนกพื้นที่ป่าไม้ ภาพถ่ายจากดาวเทียม ด้วย Deep Learning – Image Classification ep.5

ใน ep.5 นี้ เราจะมาเพิ่มความซับซ้อนขึ้นจากที่ 1 รูป 1 Label กลายเป็น 1 รูป หลาย Label จำแนกพื้นที่ป่าไม้ โดยใช้ชุดข้อมูลภาพถ่ายจากดาวเทียม ภาพถ่ายทางอากาศ ของป่าอเมซอน แห่งทวีปอเมริกาใต้ ผืนป่าที่ใหญ่ที่สุดในโลก ในการติดตามการเปลี่ยนแปลงของผืนป่า ตำแหน่งการตัดไม้ทำลายป่า รุกล้ำแนวเขตอุทยาน ไฟป่า สภาวะโลกร้อน เพื่อแจ้งเตือนแก่รัฐบาล หน่วยงานในพื้นทีในการรับมือได้อย่างทันท่วงทีต่อไป

Batch Size คืออะไร ปรับอย่างไรให้พอดี กับ GPU Memory และ ได้ Accuracy สูงสุด ในการเทรน Deep Neural Network – Hyperparameter Tuning ep.2

ในปัจจุบันการเทรน Deep Neural Network ใช้พื้นฐานอัลกอริทึมมาจาก Mini-Batch Stochastic Gradient Optimization เป็นส่วนใหญ่ และจำนวนตัวอย่างข้อมูลที่เราป้อนให้โมเดลในหนึ่งครั้ง หรือ 1 Mini-Batch คือ Hyperparameter สำคัญตัวหนึ่งที่เราต้องปรับจูน ซึ่งใน Library ต่าง ๆ จะใช้ชื่อว่า Batch Size

รวมคำย่อเกี่ยวกับ AI, Neural Network และ Machine Learning

AI = Artificial Intelligence = ปัญญาประดิษฐ์ ML = Machine Learning NN = Neural Network DL = Deep Learning