TensorFlow Playground คือ เว็บไซต์ที่ให้เราเรียนรู้เกี่ยวกับ Neural Network ด้วยการเป็นเครื่องมือให้เราได้ออกแบบ และเทรน Neural Network ที่มีขนาดเล็ก ไม่ซับซ้อนมาก แต่ทำงานได้จริง TensorFlow Playground ใช้งานสะดวกเพราะไม่ต้องติดตั้งโปรแกรมอะไรเลย สามารถใช้งานผ่านเว็บไซต์ได้ทันที
Tag Archives: Hyperparameter Tuning
จัดการหมวดหมู่เล็ก ๆ ยิบย่อย รวมข้อมูลหมวดหมู่ Category เล็ก ๆ เป็นหมวดหมู่ Other ก่อนป้อนเทรน Machine Learning – Preprocessing ep.4
ในหลาย ๆ Dataset เราจะพบว่าข้อมูลแบบ Category มีการแตกยิบย่อยมากเกินไป เช่น บาง Category มีแค่ 1 หรือ 2 Record เท่านั้น หรือ Category เล็ก จำนวน Record แตกต่างกับ Category ใหญ่ ๆ หลายร้อย หลายพันเท่า ข้อมูล Category เล็ก ๆ ยิบย่อยเหล่านี้ อาจจะไม่ได้ช่วยโมเดล Machine Learning ในการเรียนรู้ก็ได้ ทางแก้คือ เราจะ Group รวม Category เล็ก ๆ เหล่านั้นรวมออกมาเป็น Category ใหม่ ตั้งชื่อว่า Other
lr_find หา Learning Rate ที่ดีที่สุดในการเทรน Machine Learning โมเดล Deep Neural Network ด้วย Callback – Neural Network ep.12
จาก ep ก่อน เราได้รู้จัก Hyperparameter ที่สำคัญที่สุดในการเทรน Machine Learning ชื่อ Learning Rate แต่ปัญหาคือ ถ้าเรากำหนดค่า Learning น้อยไปก็ทำให้เทรนได้ช้า แต่ถ้ามากเกินไปก็ทำให้ไม่ Converge หรืออาจจะ Error ไปเลย แล้วเราจะมีวิธีใด ที่จะหาค่า Learning Rate ที่ดีที่สุด มาใช้เทรน Deep Neural Network ของเรา
Batch Size คืออะไร ปรับอย่างไรให้พอดี กับ GPU Memory และ ได้ Accuracy สูงสุด ในการเทรน Deep Neural Network – Hyperparameter Tuning ep.2
ในปัจจุบันการเทรน Deep Neural Network ใช้พื้นฐานอัลกอริทึมมาจาก Mini-Batch Stochastic Gradient Optimization เป็นส่วนใหญ่ และจำนวนตัวอย่างข้อมูลที่เราป้อนให้โมเดลในหนึ่งครั้ง หรือ 1 Mini-Batch คือ Hyperparameter สำคัญตัวหนึ่งที่เราต้องปรับจูน ซึ่งใน Library ต่าง ๆ จะใช้ชื่อว่า Batch Size
Learning Rate คืออะไร ปรับยังไงให้พอดี Epoch คืออะไร สำคัญอย่างไร กับการเทรน Machine Learning – Hyperparameter Tuning ep.1
ใน ep นี้เราจะมาเรียนรู้กันว่า Learning Rate คืออะไร Learning Rate สำคัญอย่างไรกับการเทรน Machine Learning โมเดล Neural Network / Deep Learning เราจะปรับ Learning Rate อย่างไรให้เหมาะสม เราสามารถเทรนไปปรับไปได้ไหม หรือต้องใช้ค่าคงที่ตลอด และโมเดลที่ Transfer Learning กับโมเดลที่เทรนใหม่เลย ต้องการ Learning Rate, จำนวน Epoch ต่างกันอย่างไร