Pandas_UI เครื่องมือจัดการ Pandas DataFrame แบบง่าย ๆ – Pandas ep.7

ใน ep ที่แล้ว เราใช้ Pandas Profiling ในการช่วยทำการสำรวจข้อมูล Exploratory Data Analysis (EDA) แต่ถ้าเราต้องการเปลี่ยนแปลงข้อมูลนิด ๆ หน่อย ๆ หรือเราต้องการพล็อตกราฟที่ใน Pandas Profiling ไม่มีมาให้ล่ะ จะทำอย่างไร เราสามารถใช้ Pandas_UI มาช่วยได้

Customer Segmentation คืออะไร สอนทฤษฎี Machine Learning หลักการ สร้าง Segment Profile กลุ่มลูกค้า, Customer Profile การแบ่งกลุ่มลูกค้า ด้วย K-Means Clustering – Tabular Data ep.4

ใน ep นี้ เราจะมาวิเคราะห์ Customer Segment สอนทฤษฎี Machine Learning การแบ่งกลุ่มลูกค้า Customer Segmentation หรือ Market Segmentation หลักการ สร้าง Segment Profile กลุ่มลูกค้า, Customer Profile ด้วย K-Means Clustering ซึ่งเป็น Machine Learning แบบ Unsupervised Learning เป็น Algorithm ที่เรียบง่าย และนิยมใช้ใงาน Customer Relationship Management, Business Model Canvas

Sentiment Classification วิเคราะห์รีวิวหนัง IMDB แง่บวก แง่ลบ ด้วย Naive Bayes และ Logistic Regression – NLP ep.5

ใน ep นี้ เราจะใช้ความรู้จาก ep ก่อน ในการสร้าง Term-Document Matrix ด้วย CountVectorizer ด้วยข้อมูลรีวิวหนัง IMDB แล้วนำ Term-Document Matrix ที่ได้ มาวิเคราะห์ Sentiment Classification ว่าเป็นรีวิวแง่บวก หรือแง่ลบ (positive/negative) ด้วยเทคนิค Naive Bayes และ Logistic Regression

Latent Semantic Analysis (LSA) คืออะไร Text Classification ด้วย Singular Value Decomposition (SVD), Non-negative Matrix Factorization (NMF) – NLP ep.4

ใน ep นี้ เราจะมาเรียนรู้ งานจำแนกหมวดหมู่ข้อความ Text Classification ซึ่งเป็นงานพื้นฐานทางด้าน NLP ด้วยการทำ Latent Semantic Analysis (LSA) วิเคราะห์หาความหมายที่แฝงอยู่ในข้อความ โดยใช้เทคนิค Singular Value Decomposition (SVD) และ Non-negative Matrix Factorization (NMF)

จัดการหมวดหมู่เล็ก ๆ ยิบย่อย รวมข้อมูลหมวดหมู่ Category เล็ก ๆ เป็นหมวดหมู่ Other ก่อนป้อนเทรน Machine Learning – Preprocessing ep.4

ในหลาย ๆ Dataset เราจะพบว่าข้อมูลแบบ Category มีการแตกยิบย่อยมากเกินไป เช่น บาง Category มีแค่ 1 หรือ 2 Record เท่านั้น หรือ Category เล็ก จำนวน Record แตกต่างกับ Category ใหญ่ ๆ หลายร้อย หลายพันเท่า ข้อมูล Category เล็ก ๆ ยิบย่อยเหล่านี้ อาจจะไม่ได้ช่วยโมเดล Machine Learning ในการเรียนรู้ก็ได้ ทางแก้คือ เราจะ Group รวม Category เล็ก ๆ เหล่านั้นรวมออกมาเป็น Category ใหม่ ตั้งชื่อว่า Other

สำรวจข้อมูล Exploratory Data Analysis (EDA) ด้วย Pandas Profiling วิเคราะห์ Pandas DataFrame – Pandas ep.6

เมื่อเราได้ Dataset ใหม่มา สิ่งแรกที่เราควรทำ คือ Exploratory Data Analysis (EDA) ทำความเข้าใจข้อมูล ในแต่ละ Feaure เช่น ข้อมูลเป็นชนิดอะไร, ข้อมูลเป็นแบบต่อเนื่องหรือไม่ต่อเนื่อง, ช่วงของข้อมูลกว้างแค่ไหน, การกระจายของข้อมูลเป็นอย่างไร, มีข้อมูลขาดหายไปเยอะแค่ไหน, แต่ละ Feature เชื่อมโยงกันอย่างไร การวิเคราะห์ทั้งหมดนี้ค่อนข้างซับซ้อน และซ้ำซ้อนเหมือนกันในทุก ๆ Dataset จะมีวิธีไหนที่จะทำให้งานซ้ำ ๆ เหล่านี้ง่ายขึ้น

สอน Machine Learning วิเคราะห์ข้อมูลแบบ Time Series Forecasting พยากรณ์ยอดขายร้านขายยา Rossmann ด้วย Deep Neural Network – Tabular Data ep.3

จาก ep ที่แล้วที่เราเรียนรู้เรื่อง Feature Engineering แบบ Basic กันไปแล้ว ใน ep นี้เราจะมาศึกษาข้อมูลที่เราพบบ่อย ๆ ในการทำงานอีกเช่นกัน คือ ข้อมูลแบบ Time Series เราจะสอนโมเดล Machine Learning ให้เรียนรู้จากข้อมูล Time Series ได้อย่างไร ให้ Forecast พยากรณ์ยอดขายร้านขายยา Rossmann ได้ความแม่นยำมากที่สุด และจำเป็นต้องใช้ Deep Neural Network แบบ Recurrent Neural Network (RNN) หรือไม่

Enable Notifications.    Ok No thanks