ใน ep ที่แล้ว เราใช้ Pandas Profiling ในการช่วยทำการสำรวจข้อมูล Exploratory Data Analysis (EDA) แต่ถ้าเราต้องการเปลี่ยนแปลงข้อมูลนิด ๆ หน่อย ๆ หรือเราต้องการพล็อตกราฟที่ใน Pandas Profiling ไม่มีมาให้ล่ะ จะทำอย่างไร เราสามารถใช้ Pandas_UI มาช่วยได้
Tag Archives: matplotlib
TensorFlow Lite Converter คืออะไร สอนแปลงโมเดล MobileNet ทำ Transfer Learning สร้าง Custom Classifier Head ไปรันบนมือถือ Mobile, อุปกรณ์ IoT Device – tflite ep.3
TensorFlow Lite Converter เป็นตัวแปลงโมเดล TensorFlow ตัวเต็ม ให้ย่อลงมาเป็นโมเดลขนาดเล็ก ที่ทำงานได้รวดเร็ว สำหรับรันกับ Interpreter บนอุปกรณ์ Edge Device ที่มี Resource จำกัด ด้วยเทคนิค Quantization โดยพิจารณาจาก Hardware ปลายทาง ที่จะนำโมเดลไป Deploy เช่น อุปกรณ์ IoT Device, มือถือ Mobile, Microcontroller ต่าง ๆ
TensorFlow Lite (TFLite) คืออะไร สอนแปลงโมเดล TensorFlow ใน Python ไปรันบนมือถือ Mobile, Android, iOS, อุปกรณ์ Edge, IoT Device, Raspberry Pi, Arduino, Embedded, Microcontroller – tflite ep.1
งานหลาย ๆ งาน มีความต้องการใช้งานโมเดล Machine Learning บนอุปกรณ์ Edge ของ Network แทนที่จะต้องเสียเวลา ส่งข้อมูลไป-กลับระหว่าง Server เราสามารถแปลงโมเดลเป็น TensorFlow Lite ให้ไปรันบนมือถือ และอุปกรณ์ Edge ได้เลย
สอนวิธีถ่ายภาพ ด้วยกล้อง Webcam ใน Google Colab – Colab ep.2
ในการทำงาน Data Science บางครั้งเราต้องการข้อมูลรูปภาพ นอกเหนือจากที่อยู่ใน Dataset เราต้องการป้อนข้อมูล Input รูปภาพจากโลกของความเป็นจริง แบบ Real-time หนึ่งในวิธีที่สะดวก และเป็นที่นิยม คือ การใช้กล้อง Webcam/iSight ที่อยู่ในโน้ตบุ๊คเกือบทุกเครื่อง ถ่ายภาพตัวเราเอง หรือถ้ามีกล้องอื่น ๆ ต่อผ่าน USB ก็สามารถใช้ได้เช่นกัน
สอนสร้าง Word Cloud ภาษาไทย ด้วย Python ใน Jupyter Notebook / Google Colab
ใน ep นี้เราจะมาเรียนรู้วิธีสร้างภาพ Tag Cloud ภาษาไทย สวย ๆ ด้วยภาษา Python กันแบบง่าย ๆ เหมือนในภาพ Cover ของบล็อก ep ก่อน ๆ เช่น อักษรกรีก คำอ่านภาษาไทย และ สอนวิธี Contribute Open Source Software Project
Latent Semantic Analysis (LSA) คืออะไร Text Classification ด้วย Singular Value Decomposition (SVD), Non-negative Matrix Factorization (NMF) – NLP ep.4
ใน ep นี้ เราจะมาเรียนรู้ งานจำแนกหมวดหมู่ข้อความ Text Classification ซึ่งเป็นงานพื้นฐานทางด้าน NLP ด้วยการทำ Latent Semantic Analysis (LSA) วิเคราะห์หาความหมายที่แฝงอยู่ในข้อความ โดยใช้เทคนิค Singular Value Decomposition (SVD) และ Non-negative Matrix Factorization (NMF)
Schedule Hyperparameter ในการเทรน Machine Learning เทรนโมเดล Deep Neural Network ด้วย Learning Rate ไม่คงที่ One Cycle – Neural Network ep.13
หลังจากที่ใน ep ก่อน เราได้ใช้ LR_Find Callback หา Learning Rate ที่ดีที่สุดได้แล้ว แล้วเราจะนำมาใช้อย่างไร Learning Rate ถือว่าเป็นหนึ่งใน Hyperparameter ที่สำคัญที่สุดในการเทรน Machine Learning มีแนวคิดจากหลากหลาย Paper ที่ว่า ในแต่ละ State ของการเทรน Deep Neural Network นั้นต้องการ Hyperparameter ต่างกันไป แล้วเราจะ Schedule Hyperparameter ของเราได้อย่างไร
ตัวอย่าง Callback ในการเทรน Machine Learning คำนวน Metrics, Recorder บันทึก Loss, Learning Rate – Neural Network ep.11
จาก ep ที่แล้ว ที่เราประยุกต์ใช้ Callback กับ Training Loop ในการเทรน Machine Learning ด้วยอัลกอริทึม Gradient Descent สร้างเป็น Runner Class ที่มี Callback ในทุก ๆ Event ที่เป็นไปได้ ในการเทรน Deep Neural Network แล้วเราจะใช้ประโยชน์จาก ระบบ Callback อันแสนยืดหยุ่นนี้ อย่างไรได้บ้าง ใน ep นี้เราจะมาดูตัวอย่างการสร้าง Callback แบบง่าย ๆ แต่มีประโยชน์ คือการ คำนวน Metrics และ บันทึกค่า Loss, Learning Rate