Data Echoing คืออะไร เพิ่มความเร็วในการเทรน Neural Network ด้วยเทคนิค Data Echoing – Preprocessing ep.6

อย่างที่เราทราบกันดีว่า I/O หรือระบบ Input/Output เป็นอะไรที่ช้าที่สุด ของระบบคอมพิวเตอร์ การที่จะ Optimize ให้คอมพิวเตอร์ทำงานได้ประสิทธิภาพมากที่สุด ต้องใช้ความรู้ความเข้าใจ บริหารจัดการทรัพยากรส่วนต่าง ๆ เช่น CPU, GPU, Memory, Storage, Network ให้ทำงาน Utilize มากที่สุด ลด Bottleneck ที่ต้องรอข้อมูลระหว่างกัน แต่ในการเทรน Machine Learning ที่เราวิธีที่เราทำกันอยู่ Training Loop จะเริ่มต้นจาก อ่านข้อมูล, สับไพ่ข้อมูล, Split, Data Augmentation, Feed Forward, Loss Function, Backpropagation, Optimizer Update Weight แล้วเริ่มต้น Loop ใหม่ เป็นอย่างนี้ซ้ำ ๆ ไปเรื่อย ๆ ตามลำดับ โดยไม่ได้คำนึงถึงประเด็นด้านบน แล้วเราจะแก้ไขอย่างไร

Layer-Sequential Unit-Variance Initialization (LSUV) คืออะไร แตกต่างกับ Kaiming อย่างไร ในการ Initialize Deep Neural Network – ConvNet ep.6

จากใน ep ก่อน เราได้เรียนรู้การสร้าง ConvNet ขึ้นมาจากหลายส่วนประกอบด้วยกัน และเมื่อสร้างโมเดลขึ้นมาแล้ว ก่อนเทรนเราจำเป็นต้อง Initialize Parameter (Weight, Bias) ต่าง ๆ ด้วยค่าที่เหมาะสม ใน ep ที่แล้ว เราใช้ Kaiming Initalization แล้วถ้าโมเดลเราเกิดซับซ้อนขึ้นเรื่อย ๆ ล่ะ เช่น มีการเปลี่ยน Activaiton Function, มี Skip Connection, มีหลาย Input, เพิ่ม BatchNorm แบบต่าง ๆ, etc. จะทำอย่างไร

ตัวอย่างการใช้ PyTorch Hook วิเคราะห์ Mean, Standard Deviation, Histogram ของ Activation Map ปรับปรุงการเทรน Deep Learning ด้วย GeneralReLU – ConvNet ep.3

จากใน ep ที่แล้วเราได้เรียนรู้การใช้งาน PyTorch Hook ใน ep นี้เราจะมา Refactor โค้ดสร้าง Class ขึ้นมาจัดการ Hook และใช้ Hook สถิติ ที่ลึกมากขึ้น เราจะวิเคราะห์กราฟ Mean, Std และ Histogram จะเห็นว่าค่อนข้าง Converge เร็ว ไม่เกิด Vanishing Gradient เนื่องจาก PyTorch ได้แก้ปัญหาไปแล้วด้วย Kaiming Initialization แต่ก็ยังมีปัญหาอื่น ๆ อยู่ในช่วงแรก ๆ แล้วเราจะแก้ปัญหานี้อย่างไร

PyTorch Hook คืออะไร สอน PyTorch Hook เจาะลึก Activation Map, Gradient ภายใน Deep Convolutional Neural Network – ConvNet ep.2

จากใน ep ก่อน ๆ ที่เราได้นำ Callback มาประยุกต์ใช้ใน Training Loop เพื่อช่วยให้การเทรนมีความยืดหยุ่น แต่ติดข้อจำกัดว่าเราไม่สามารถเข้าถึงข้อมูลภายในโมเดล Deep Neural Network ในแต่ละ Layer ได้ เนื่องจากการสร้างโมเดลของเราเป็นการเรียกใช้ API ภาษา Python ของ PyTorch แล้วเราจะแก้ปัญหานี้อย่างไรดี

ตัวอย่าง Callback ในการเทรน Machine Learning คำนวน Metrics, Recorder บันทึก Loss, Learning Rate – Neural Network ep.11

จาก ep ที่แล้ว ที่เราประยุกต์ใช้ Callback กับ Training Loop ในการเทรน Machine Learning ด้วยอัลกอริทึม Gradient Descent สร้างเป็น Runner Class ที่มี Callback ในทุก ๆ Event ที่เป็นไปได้ ในการเทรน Deep Neural Network แล้วเราจะใช้ประโยชน์จาก ระบบ Callback อันแสนยืดหยุ่นนี้ อย่างไรได้บ้าง ใน ep นี้เราจะมาดูตัวอย่างการสร้าง Callback แบบง่าย ๆ แต่มีประโยชน์ คือการ คำนวน Metrics และ บันทึกค่า Loss, Learning Rate

การประยุกต์ใช้ Callback เพิ่มความยืดหยุดให้ Training Loop รองรับการเทรนด้วย Algorithm ซับซ้อนขึ้น – Neural Network ep.10

จาก ep ก่อน ๆ เราจะได้ Training Loop ที่สามารถเทรน Neural Network ได้อย่างถูกต้อง สมบูรณ์ ได้ผลลัพธ์เป็นที่หน้าพอใจ แต่ถ้าเราต้องการเพิ่มเติม Logic การเทรนที่ซับซ้อนยิ่งขึ้น เราจะต้องแก้โค้ดนี้ แทรกตามบรรทัดต่าง ๆ เช่น ก่อนเริ่มเทรน, ก่อนเริ่ม Epoch, หลังจากจบ 1 Epoch, etc. ข้อเสียของการแทรกโค้ดแบบนี้ คือ ทำให้โค้ดใน Loop นี้ก็จะบวมขึ้นเรื่อย ๆ ส่งผลให้มีปัญหาในการ Maintain แล้วเราจะแก้ปัญหานี้อย่างไรดี

Refactor โค้ด Neural Network สร้าง DataBunch และ Learner ปรับปรุง Training Loop – Neural Network ep.9

ใน ep ที่แล้วเราได้ Neural Network และ Training Loop ที่ทำงานได้ดีพอสมควร มีการวัดผล Metrics กับข้อมูลใน Validation Set เพื่อให้แน่ใจว่าโมเดลทำงานได้ถูกต้องกับข้อมูลที่ไม่เคยเห็นมาก่อน แต่โค้ด Training Loop ของเรายังมีความซับซ้อนเกินไป ใช้ Parameter จากภายนอกถึง 6 ตัว ซึ่งมากเกินไป ทำให้ยากต่อการต่อยอดเทรนในอัลกอริทึมที่ซับซ้อนยิ่งขึ้น แล้วเราจะแก้ไขอย่างไร

ทดสอบ Metrics ของ Neural Network ด้วยข้อมูลจาก Validation Set ระหว่างการเทรน Machine Learning – Neural Network ep.8

ในการเทรน Machine Learning การทดสอบว่าโมเดล Neural Network ทำงานเป็นอย่างไร ที่ถูกต้องเราไม่ควรเทสกับข้อมูล ใน Training Set ที่เราป้อนให้โมเดลในขณะเทรน เพราะจะทำให้ไม่ได้ค่าที่แท้จริง ถ้าโมเดลใช้วิธีจำข้อสอบ เรียกว่า Overfit เมื่อเทสแล้วจะได้คะแนนสูงผิดปกติ ที่ถูกคือ เราควรเทสกับข้อมูลที่โมเดลไม่เคยเห็นมาก่อน ใน Validation Set ที่เรากันเอาไว้ก่อนหน้าที่จะเริ่มต้นเทรน

สับไพ่ข้อมูล DataLoader ด้วย Random Sampler และ Collate ป้อนโมเดล เทรน Machine Learning – Neural Network ep.7

ในแต่ละ Epoch ของการเทรน Machine Learning สอนโมเดล Deep Neural Network เราไม่ควรป้อนข้อมูลที่เรียงลำดับเหมือนกันทุกครั้งให้โมเดล ใน ep นี้เราจะมาสร้าง DataLoader เวอร์ชันใหม่ ที่จะสับไพ่ข้อมูลตัวอย่างก่อนป้อนให้โมเดล เป็นการลดการจำข้อสอบของโมเดล ช่วยให้โมเดล Generalization ได้ดีขึ้น ลด Variance ของโมเดล

ใช้ Dataset, DataLoader ป้อนข้อมูลให้ Neural Network ทีละ Batch สอน Refactor Training Loop – Neural Network ep.5

ใน ep นี้เราจะมาสร้าง Dataset และ DataLoader เพื่อเป็น Abstraction ในจัดการข้อมูลตัวอย่าง x, y จาก Training Set, Validation Set ที่เราจะป้อนให้กับ Neural Network ใช้เทรน ใน Training Loop ของ Machine Learning