Mish Function คืออะไร ดีกว่า ReLU จริงหรือไม่ – Activation Function ep.4

จาก ep ก่อน ๆ ที่เราได้พูดถึง Activation Function ยอดนิยมอย่าง ReLU ว่าเป็นฟังก์ชันที่ถูกใช้ในโมเดล Deep Learning มากที่สุดในปัจจุบัน แต่เมื่อเวลาผ่านไปมีโมเดลใหม่ ๆ Loss Function ใหม่ ๆ Optimizer ใหม่ ๆ ถูกสร้างขึ้นทุกปี แล้วจะมีฟังก์ชันใหม่อะไรมาแทน ReLU ได้หรือไม่ คำตอบอาจจะเป็น Mish Function

ตัวอย่างการใช้ PyTorch Hook วิเคราะห์ Mean, Standard Deviation, Histogram ของ Activation Map ปรับปรุงการเทรน Deep Learning ด้วย GeneralReLU – ConvNet ep.3

จากใน ep ที่แล้วเราได้เรียนรู้การใช้งาน PyTorch Hook ใน ep นี้เราจะมา Refactor โค้ดสร้าง Class ขึ้นมาจัดการ Hook และใช้ Hook สถิติ ที่ลึกมากขึ้น เราจะวิเคราะห์กราฟ Mean, Std และ Histogram จะเห็นว่าค่อนข้าง Converge เร็ว ไม่เกิด Vanishing Gradient เนื่องจาก PyTorch ได้แก้ปัญหาไปแล้วด้วย Kaiming Initialization แต่ก็ยังมีปัญหาอื่น ๆ อยู่ในช่วงแรก ๆ แล้วเราจะแก้ปัญหานี้อย่างไร

PyTorch Hook คืออะไร สอน PyTorch Hook เจาะลึก Activation Map, Gradient ภายใน Deep Convolutional Neural Network – ConvNet ep.2

จากใน ep ก่อน ๆ ที่เราได้นำ Callback มาประยุกต์ใช้ใน Training Loop เพื่อช่วยให้การเทรนมีความยืดหยุ่น แต่ติดข้อจำกัดว่าเราไม่สามารถเข้าถึงข้อมูลภายในโมเดล Deep Neural Network ในแต่ละ Layer ได้ เนื่องจากการสร้างโมเดลของเราเป็นการเรียกใช้ API ภาษา Python ของ PyTorch แล้วเราจะแก้ปัญหานี้อย่างไรดี

Visualization เจาะลึกภายใน Neural Network วิเคราะห์ Activation และ Gradient ด้วย Heatmap และ Grad-CAM – ConvNet ep.4

หลาย ๆ คนจะมองว่า Neural Network เป็นเหมือนกล่องดำ ข้างในมีแต่ตัวเลข เมตริก เทนเซอร์ Neuron, Activation, Gradient วิ่งไปวิ่งมา โดยที่เราไม่รู้ว่า Logic การทำงานภายในของมันเป็นอย่างไร ไม่สามารถเข้าใจได้ แต่เราสามารถใช้เทคนิค Grad-CAM มาช่วยในการตีความ Activation และ Gradient ของโมเดล ทำให้เข้าใจถึงการทำงานภายใน Neural Network มากขึ้น ว่าโมเดลพิจารณาจากบริเวณไหน Attention โฟกัสส่วนไหน เป็นพิเศษ

Enable Notifications.    Ok No thanks