Sentiment Classification วิเคราะห์รีวิวหนัง IMDB แง่บวก แง่ลบ ด้วย AWD_LSTM Deep Neural Network เทรนแบบ ULMFiT Transfer Learning – NLP ep.8

ใน ep ที่แล้วเราใช้ Naive Bayes และ Logistic Regression ที่เป็นอัลกอริทึมที่เป็นที่นิยมก่อนยุค Deep Learning แต่ใน ep นี้เราจะเปลี่ยนมาใช้ Deep Neural Network แทนว่าจะมีประสิทธิภาพต่างกันอย่างไร

TensorFlow Playground คืออะไร รีวิว TensorFlow Playground สอน Neural Network แบบเห็นภาพ เข้าใจง่าย

TensorFlow Playground คือ เว็บไซต์ที่ให้เราเรียนรู้เกี่ยวกับ Neural Network ด้วยการเป็นเครื่องมือให้เราได้ออกแบบ และเทรน Neural Network ที่มีขนาดเล็ก ไม่ซับซ้อนมาก แต่ทำงานได้จริง TensorFlow Playground ใช้งานสะดวกเพราะไม่ต้องติดตั้งโปรแกรมอะไรเลย สามารถใช้งานผ่านเว็บไซต์ได้ทันที

Layer-Sequential Unit-Variance Initialization (LSUV) คืออะไร แตกต่างกับ Kaiming อย่างไร ในการ Initialize Deep Neural Network – ConvNet ep.6

จากใน ep ก่อน เราได้เรียนรู้การสร้าง ConvNet ขึ้นมาจากหลายส่วนประกอบด้วยกัน และเมื่อสร้างโมเดลขึ้นมาแล้ว ก่อนเทรนเราจำเป็นต้อง Initialize Parameter (Weight, Bias) ต่าง ๆ ด้วยค่าที่เหมาะสม ใน ep ที่แล้ว เราใช้ Kaiming Initalization แล้วถ้าโมเดลเราเกิดซับซ้อนขึ้นเรื่อย ๆ ล่ะ เช่น มีการเปลี่ยน Activaiton Function, มี Skip Connection, มีหลาย Input, เพิ่ม BatchNorm แบบต่าง ๆ, etc. จะทำอย่างไร

BatchNorm คืออะไร สอน Batch Normalization เทรน Machine Learning โมเดล Deep Convolutional Neural Network – ConvNet ep.5

จากใน ep ก่อน ที่เราได้เรียนรู้การทำ Normalization ข้อมูล Input ให้มี Mean=0, Std=1 เท่ากันในทุก Feature ว่ามีประโยชน์ในการเทรน Machine Learning อย่างไร คำถามก็คือ แล้วทำไมเราไม่ทำแบบเดียวกันใน Hidden Layer ของ Deep Neural Network ในขณะที่เราเทรนโมเดล Deep Learning ด้วยล่ะ

ตัวอย่าง Vanishing Gradient Problem และ วิธีแก้ Vanishing Gradient Problem ด้วย Kaiming Initialization – Neural Network ep.3

ใน ep ที่แล้วเราได้เรียนรู้ถึงปัญหา Vanishing Gradient Problem และวิธีแก้ไขกันไปแล้ว ใน ep นี้เราจะเจาะลึกลงไปถึงสาเหตุ ดูตัวอย่างของ Neural Network ว่าเมื่อเกิดปัญหา Vanishing Gradient Problem และ Exploding Gradient Problem จะมีอาการอย่างไร และเราจะแก้ไขอย่างไรให้โมเดลสามารถเทรนได้ต่อ

Vanishing Gradient Problem คืออะไร แก้ Vanishing Gradient Problem ด้วย Xavier Initialization และ Kaiming Initialization – Neural Network ep.2

ใน Machine Learning เราจะพบปัญหา Vangishing Gradient ในการเทรน Artificial Neural Network ด้วยอัลกอริทึม Gradient Descent และ Backpropagation ในระหว่างการเทรนโมเดลจะถูกอัพเดท Weight และ Bias จาก Partial Derivative ของ Loss Function ขึ้นกับ Weight, Bias นั้น ๆ ในทุก ๆ รอบการเทรน Vanishing Gradient Problem คือ ปัญหาที่เกิดในบางเคส เราพบว่าในระหว่างการเทรน Gradient มีขนาดเล็กลงเรื่อย ๆ จนเท่ากับ 0 ทำให้ Weight ไม่ถูกอัพเดทอีกต่อไป ทำให้โมเดลเทรนต่อไม่ได้ แล้วเราจะแก้ปัญหานี้อย่างไรดี

Enable Notifications    OK No thanks