ใน ep นี้เราจะมาสร้าง Artificial Neural Network แบบ Recurrent Neural Network (RNN) กันแต่ต้น ด้วยภาษา Python เริ่มตั้งแต่ ปัญหาว่าทำไมต้องมี RNN พื้นฐานแนวคิด ศึกษาการทำงานของ RNN แบบง่าย ข้อดี ข้อเสีย แล้วพัฒนาโมเดล ปรับปรุง แก้ไขข้อจำกัดของโมเดล RNN แต่ละแบบ ไปจนถึง Gated Recurrent Unit (GRU)
Tag Archives: dropout
Sentiment Classification วิเคราะห์รีวิวหนัง IMDB แง่บวก แง่ลบ ด้วย AWD_LSTM Deep Neural Network เทรนแบบ ULMFiT Transfer Learning – NLP ep.8
ใน ep ที่แล้วเราใช้ Naive Bayes และ Logistic Regression ที่เป็นอัลกอริทึมที่เป็นที่นิยมก่อนยุค Deep Learning แต่ใน ep นี้เราจะเปลี่ยนมาใช้ Deep Neural Network แทนว่าจะมีประสิทธิภาพต่างกันอย่างไร
BatchNorm คืออะไร สอน Batch Normalization เทรน Machine Learning โมเดล Deep Convolutional Neural Network – ConvNet ep.5
จากใน ep ก่อน ที่เราได้เรียนรู้การทำ Normalization ข้อมูล Input ให้มี Mean=0, Std=1 เท่ากันในทุก Feature ว่ามีประโยชน์ในการเทรน Machine Learning อย่างไร คำถามก็คือ แล้วทำไมเราไม่ทำแบบเดียวกันใน Hidden Layer ของ Deep Neural Network ในขณะที่เราเทรนโมเดล Deep Learning ด้วยล่ะ
Dropout คืออะไร แนะนำการใช้ Dropout ลด Overfit ใน Deep Neural Network – Regularization ep.2
โมเดล Deep Neural Network มักจะมีปัญหา Overfit เมื่อเทรนกับ Dataset ที่มีขนาดเล็ก แต่เราสามารถแก้ปัญหา Overfit โดยใช้วิธีการ Ensembles คือ สร้างหลาย ๆ โมเดลแล้วเอา Output มาเฉลี่ยกัน แต่ทำแบบนี้ทั้งสิ้นเปลืองทรัพยากร เวลา และต้องคอย Maintain หลายโมเดลอีก เราจะมีวิธีอะไรที่ดีกว่านี้ไหม