ในแต่ละ Epoch ของการเทรน Machine Learning สอนโมเดล Deep Neural Network เราไม่ควรป้อนข้อมูลที่เรียงลำดับเหมือนกันทุกครั้งให้โมเดล ใน ep นี้เราจะมาสร้าง DataLoader เวอร์ชันใหม่ ที่จะสับไพ่ข้อมูลตัวอย่างก่อนป้อนให้โมเดล เป็นการลดการจำข้อสอบของโมเดล ช่วยให้โมเดล Generalization ได้ดีขึ้น ลด Variance ของโมเดล
Tag Archives: Stochastic Gradient Descent
Refactor สร้าง Optimizer สำหรับอัพเดท Parameter ของ Neural Network ในการเทรน Deep Learning – Neural Network ep.6
ใน ep นี้เราจะมา Refactor Model สร้าง Module, Parameter และ Optimizer เป็น Abstraction ในจัดการการอัพเดท Parameter ของโมเดล ด้วยอัลกอริทึมต่าง ๆ เพื่อลดความซับซ้อน ของ Training Loop ทำให้การเทรน Neural Network ยืดหยุ่นขึ้น เราจะใช้โค้ดจาก Neural Network ep 5 เป็นโค้ดเริ่มต้น นำมา Refactor ต่อ
สร้าง Training Loop แบบง่าย เริ่มต้นเทรน Neural Network ด้วย Mini-Batch SGD – Neural Network ep.4
ใน ep นี้ เราจะมาสร้าง Neural Network สำหรับงาน Classification ด้วยการประกอบชิ้นส่วนทุกอย่างใน ep ก่อน ๆ เข้าด้วยกัน ขึ้นมาเป็น 2 Layers Deep Neural Network ใช้ ReLU Activation Function พร้อม Initialize Weight และ Bias
ตัวอย่าง Linear Regression ด้วย Stochastic Gradient Descent (SGD) พื้นฐานของ Neural Network – Optimization ep.2
จาก ep ที่แล้วที่เราเล่าถึงคอนเซ็ปต์ของ SGD ไป ใน ep นี้เราจะมาดูตัวอย่างโค้ดแบบง่ายที่สุด ซับซ้อนน้อยที่สุด ซึ่งเป็นพื้นฐานสำคัญของ Machine Learning แบบ Neural Network คือ Linear Regression ด้วยอัลกอริทึม Stochastic Gradient Descent (SGD) แต่ในการหา Slope นั้นเราไม่ต้อง Diff เอง แต่เราจะใช้ความสามารถ ของ Pytorch เรียกว่า Autograd หา Gredient ของ Parameter ทุกตัวให้โดยอัตโนมัติ
Gradient Descent คืออะไร อะไรคือ การเคลื่อนลงตามความชัน, Stochastic Gradient Descent (SGD) คืออะไร – Optimization ep.1
ในการเทรน Artificial Neural Network เราต้องการทราบว่าการเปลี่ยนแปลงขยับ เพิ่ม/ลด Weight หนึ่ง ๆ มีผลต่อการ เพิ่ม/ลด Loss อย่างไร โดยสมมติว่า Weight อื่น ๆ คงที่ทั้งหมด เช่นถ้าเราเพิ่ม Weight A + 0.0001 แล้ว Loss ลด เราก็ลองเพิ่ม Weight A ไป แล้วลองเทสดู ทำแบบนี้ไปทุก Weight ซ้ำไปเรื่อย ๆ จนกว่าจะได้ Loss ที่น้อยที่สุด