ในกรณีที่จำนวนข้อมูลตัวอย่าง ในแต่ละ Class แตกต่างกันมาก เรียกว่า Class Imbalance แทนที่เราจะใช้ Cross Entropy Loss ตามปกติที่เรามักจะใช้ในงาน Classification เราจะใช้ Cross Entropy Loss เวอร์ชันพิเศษ เรียกว่า Weighted Cross Entropy Loss เข้ามาช่วย
Tag Archives: multi-class classification
Focal Loss คืออะไร – Loss Function ep.4
ในกรณีที่จำนวนข้อมูลตัวอย่าง ในแต่ละ Class แตกต่างกันมาก เรียกว่า Class Imbalance แทนที่เราจะใช้ Cross Entropy Loss ตามปกติที่เรามักจะใช้ในงาน Classification ในเคสนี้เราจะเปลี่ยนไปใช้ Loss Function พิเศษ ที่ออกแบบมาเพื่อแก้ปัญหานี้ เรียกว่า Focal Loss ดังสมการด้านล่าง
สอนเขียน App Android ปัญญาประดิษฐ์ AI Computer Vision Mobile Application กล้องมือถือ ด้วย TensorFlow Lite รันโมเดล Machine Learning – tflite ep.8
ใน ep นี้ เราจะสอน สร้างแอพ Android เขียน App AI บนมือถือ ที่มีความสามารถ Image Classification ด้วย TensorFlow Lite โดยใช้ Transfer Learning โมเดล Inception v3 มาเป็น Feature Extractor และเพิ่ม Custom Head 3 Class มา Convert ประกอบเป็น App สำหรับรันบนมือถือ Android ด้วยภาษา Kotlin
สอนสร้างแอพ Android เขียน App มือถือ AI ตรวจจับวัตถุ Object Detection กล้องมือถือ ด้วยภาษา Kotlin รัน TensorFlow Lite โมเดล Machine Learning – tflite ep.7
ใน ep นี้ เราจะสอน ขั้นตอนการสร้างแอพพลิเคชั่น AI ที่มีความสามารถ ตรวจจับวัตถุ Object Detection ด้วย TensorFlow Lite โดยใช้โมเดล MobileNet SSD ซึ่งถูก Pre-trained และ Convert ไว้เรียบร้อยแล้ว มาประกอบเป็น App สำหรับรันบนมือถือ Android ด้วยภาษา Kotlin
สอนเขียน App มือถือ สร้างแอพ Android AI จำแนกรูปภาพ Image Classification กล้องมือถือ ด้วยภาษา Kotlin เรียกใช้ TensorFlow Lite โมเดล Machine Learning – tflite ep.6
ใน ep นี้ เราจะสอน ขั้นตอนการสร้างแอพพลิเคชั่น AI ที่มีความสามารถ Image Classification แบบ Multi-class Classification จำแนกรูปภาพ ด้วย TensorFlow Lite โดยใช้โมเดล MobileNet ซึ่งถูก Pre-trained, Quantization และ Convert ไว้เรียบร้อยแล้ว มาประกอบเป็น App สำหรับรันบนมือถือ Android ด้วยภาษา Kotlin
สอนเขียนโปรแกรม AI บนมือถือ Android ด้วยภาษา Kotlin เรียกใช้ TensorFlow Lite โมเดล Machine Learning จำแนกรูปภาพ หมา, แมว – tflite ep.5
ใน ep นี้เราจะเรียนรู้การสร้าง App ที่มีความสามารถ Image Classification แบบ Multi-class Classification จำแนกรูปภาพ ด้วย TensorFlow Lite โดยใช้โมเดลที่เราแปลงเตรียมไว้แล้วใน ep ก่อน ซึ่งเป็นโมเดล Convolutional Neural Network จำแนกหมาแมว สำหรับรันบนมือถือ Android ด้วยภาษา Kotlin
สอน TensorFlow Lite สร้าง Convolutional Neural Network (ConvNet, CNN) จำแนกรูปภาพแฟชั่น Fashion MNIST แปลง Convert ไปรันบนมือถือ, อุปกรณ์ Edge – tflite ep.4
ใน ep นี้เราจะสร้าง Convolutional Neural Network (ConvNet, CNN) ด้วยภาษา Python โดยใช้ TensorFlow สำหรับจำแนกรูปภาพแฟชั่น เสื้อผ้า กางเกง กระโปรง รองเท้า กระเป๋า แบบ Single Label Multiclass Classification จากชุดข้อมูล Fashion MNIST Dataset เซฟเป็น SavedModel แล้วใช้ TensorFlow Lite Converter ทำการ Convert เป็น TensorFlow Lite
TensorFlow Lite Converter คืออะไร สอนแปลงโมเดล MobileNet ทำ Transfer Learning สร้าง Custom Classifier Head ไปรันบนมือถือ Mobile, อุปกรณ์ IoT Device – tflite ep.3
TensorFlow Lite Converter เป็นตัวแปลงโมเดล TensorFlow ตัวเต็ม ให้ย่อลงมาเป็นโมเดลขนาดเล็ก ที่ทำงานได้รวดเร็ว สำหรับรันกับ Interpreter บนอุปกรณ์ Edge Device ที่มี Resource จำกัด ด้วยเทคนิค Quantization โดยพิจารณาจาก Hardware ปลายทาง ที่จะนำโมเดลไป Deploy เช่น อุปกรณ์ IoT Device, มือถือ Mobile, Microcontroller ต่าง ๆ
Transfer Learning คืออะไร สอน Transfer Learning จากโมเดล MobileNet JSON ไป Retrain เทรนต่อ ภาพจากกล้อง Webcam ด้วย TensorFlow.js – tfjs ep.10
ใน ep ที่แล้วเราได้เรียนรู้การนำโมเดลที่เทรนจากบน Server มาแปลง Convert ไปเป็น JSON เพื่อไปใช้บน Web Browser แต่ในการใช้งานส่วนใหญ่เรามักไม่ต้องการ Image Classifier ที่มี Output 1000 Class ดัง MobileNet ที่เทรนกับ ImageNet เรียบร้อยแล้ว ดังนั้นเราจะใช้วิธี Transfer Learning โมเดล MobileNet ตัดหัว Classifier ทิ้ง แล้วมาเทรนต่อด้วยชุดข้อมูล Dataset ขนาดเล็กของเราเอง ที่มีแค่ 3 Class เท่านั้น
Object Detection คืออะไร บทความสอน AI ตรวจจับวัตถุ TensorFlow.js หลักการทำ Object Detection การตรวจจับวัตถุในรูปภาพ จากโมเดลสำเร็จรูป COCO-SSD – tfjs ep.8
ในบทความ ep นี้เราจะสอน หลักการทำ AI ตรวจจับวัตถุ Object Detection การตรวจจับวัตถุในรูปภาพ ด้วย TensorFlow.js โดยใช้โมเดลสำเร็จรูป COCO-SSD ซึ่งเป็นโมเดลขนาดเล็ก ไม่กิน Memory มาก เหมาะสำหรับรันบน Web Browser และ อุปกรณ์ขนาดเล็ก พัฒนาด้วยภาษา JavaScript