สอนเขียน App Android ปัญญาประดิษฐ์ AI Computer Vision Mobile Application กล้องมือถือ ด้วย TensorFlow Lite รันโมเดล Machine Learning – tflite ep.8

ใน ep นี้ เราจะสอน สร้างแอพ Android เขียน App AI บนมือถือ ที่มีความสามารถ Image Classification ด้วย TensorFlow Lite โดยใช้ Transfer Learning โมเดล Inception v3 มาเป็น Feature Extractor และเพิ่ม Custom Head 3 Class มา Convert ประกอบเป็น App สำหรับรันบนมือถือ Android ด้วยภาษา Kotlin

สอนสร้างแอพ Android เขียน App มือถือ AI ตรวจจับวัตถุ Object Detection กล้องมือถือ ด้วยภาษา Kotlin รัน TensorFlow Lite โมเดล Machine Learning – tflite ep.7

ใน ep นี้ เราจะสอน ขั้นตอนการสร้างแอพพลิเคชั่น AI ที่มีความสามารถ ตรวจจับวัตถุ Object Detection ด้วย TensorFlow Lite โดยใช้โมเดล MobileNet SSD ซึ่งถูก Pre-trained และ Convert ไว้เรียบร้อยแล้ว มาประกอบเป็น App สำหรับรันบนมือถือ Android ด้วยภาษา Kotlin

สอนเขียน App มือถือ สร้างแอพ Android AI จำแนกรูปภาพ Image Classification กล้องมือถือ ด้วยภาษา Kotlin เรียกใช้ TensorFlow Lite โมเดล Machine Learning – tflite ep.6

ใน ep นี้ เราจะสอน ขั้นตอนการสร้างแอพพลิเคชั่น AI ที่มีความสามารถ Image Classification แบบ Multi-class Classification จำแนกรูปภาพ ด้วย TensorFlow Lite โดยใช้โมเดล MobileNet ซึ่งถูก Pre-trained, Quantization และ Convert ไว้เรียบร้อยแล้ว มาประกอบเป็น App สำหรับรันบนมือถือ Android ด้วยภาษา Kotlin

สอนเขียนโปรแกรม AI บนมือถือ Android ด้วยภาษา Kotlin เรียกใช้ TensorFlow Lite โมเดล Machine Learning จำแนกรูปภาพ หมา, แมว – tflite ep.5

ใน ep นี้เราจะเรียนรู้การสร้าง App ที่มีความสามารถ Image Classification แบบ Multi-class Classification จำแนกรูปภาพ ด้วย TensorFlow Lite โดยใช้โมเดลที่เราแปลงเตรียมไว้แล้วใน ep ก่อน ซึ่งเป็นโมเดล Convolutional Neural Network จำแนกหมาแมว สำหรับรันบนมือถือ Android ด้วยภาษา Kotlin

Quantization คืออะไร Post-Training Quantization มีประโยชน์อย่างไร กับ Deep Neural Network บนอุปกรณ์ Embedded Device, IoT, Edge, มือถือ Mobile – tflite ep.2

ถ้าข้างนอกมีฝนตกอยู่ เราอาจจะไม่ได้ต้องการทราบว่าฝนกำลังตกกี่เม็ดต่อวินาที เราต้องการทราบแค่เพียงว่า ฝนตกหนัก ฝนตกปานกลาง หรือฝนตกเล็กน้อย เช่นเดียวกับการพยากรณ์ของ Neural Network บ่อยครั้งที่เราไม่ได้ต้องการความแม่นยำขนาด ตัวเลยทศนิยม Floating Point 32 Bit หรือแม้กระทั่ง 16 Bit และในหลาย ๆ งานใช้แค่จำนวนเต็ม Integer 8 Bit ก็เพียงพอแล้ว

PyTorch 1.4.0 ออกแล้ว

PyTorch เวอร์ชัน 1.4.0 ออกแล้ว ใน Release นี้จะเป็นการเน้นพัฒนาในส่วน JIT, ONNX, Distributed, Performance และ Eager Frontend เป็นหลัก ในส่วน Experimental มีการพัฒนาปรับปรุงในหลายเรื่อง Mobile และ Quantization รวมถึง Experimental Feature ใหม่ เช่น RPC-Based Model Parallel Distributed Training และ Language Bindings สำหรับภาษา Java (Inference เท่านั้น)

Transfer Learning คืออะไร สอน Transfer Learning จากโมเดล MobileNet JSON ไป Retrain เทรนต่อ ภาพจากกล้อง Webcam ด้วย TensorFlow.js – tfjs ep.10

ใน ep ที่แล้วเราได้เรียนรู้การนำโมเดลที่เทรนจากบน Server มาแปลง Convert ไปเป็น JSON เพื่อไปใช้บน Web Browser แต่ในการใช้งานส่วนใหญ่เรามักไม่ต้องการ Image Classifier ที่มี Output 1000 Class ดัง MobileNet ที่เทรนกับ ImageNet เรียบร้อยแล้ว ดังนั้นเราจะใช้วิธี Transfer Learning โมเดล MobileNet ตัดหัว Classifier ทิ้ง แล้วมาเทรนต่อด้วยชุดข้อมูล Dataset ขนาดเล็กของเราเอง ที่มีแค่ 3 Class เท่านั้น

Object Detection คืออะไร บทความสอน AI ตรวจจับวัตถุ TensorFlow.js หลักการทำ Object Detection การตรวจจับวัตถุในรูปภาพ จากโมเดลสำเร็จรูป COCO-SSD – tfjs ep.8

ในบทความ ep นี้เราจะสอน หลักการทำ AI ตรวจจับวัตถุ Object Detection การตรวจจับวัตถุในรูปภาพ ด้วย TensorFlow.js โดยใช้โมเดลสำเร็จรูป COCO-SSD ซึ่งเป็นโมเดลขนาดเล็ก ไม่กิน Memory มาก เหมาะสำหรับรันบน Web Browser และ อุปกรณ์ขนาดเล็ก พัฒนาด้วยภาษา JavaScript

MobileNet คืออะไร สอน TensorFlow.js สร้าง Image Classification จำแนกรูปภาพ จาก MobileNet โมเดลสำเร็จรูป – tfjs ep.7

ใน ep นี้เราจะเรียนรู้การสร้าง Image Classification แบบ Multi-class Classification จำแนกรูปภาพ ด้วย TensorFlow.js โดยใช้โมเดลสำเร็จรูป MobileNet ซึ่งเป็นโมเดลขนาดเล็ก ไม่ใช้ Memory มาก เหมาะสำหรับรันบน Web Browser และ อุปกรณ์ขนาดเล็ก ด้วยภาษา JavaScript

PyTorch 1.3 ออกแล้ว

PyTorch เป็น Machine Learning Library ที่ได้รับความนิยมอย่างต่อเนื่องในหมู่นักวิจัย ตอนนี้ได้ออกเวอร์ชัน 1.3 แล้ว มีฟีเจอร์ใหม่ ๆ เช่น 8-bit Integer Eager Mode Quantization, สนับสนุนอุปกรณ์ Mobile iOS และ Android, สนับสนุน TPU และ Cloud, อนุญาตให้ตั้งชื่อ Tensor, Detectron2, การเข้ารหัส Tensor เพื่อความปลอดภัย สำหรับข้อมูลส่วนตัว, etc.