TensorFlow.js converter คืออะไร สอน tensorflowjs_converter แปลงโมเดล Pre-trained ใน Python เป็น JavaScript JSON ไว้ใช้ใน TensorFlow.js – tfjs ep.9

เนื่องจากใน Web Browser มีทรัพยากรจำกัด การที่เราจะใช้ TensorFlow.js เทรนโมเดลตั้งแต่ต้น จะทำให้เสียเวลาค่อนข้างมาก ในการใช้งาน TensorFlow.js ส่วนใหญ่ เราจึงจะต้องการเทรนโมเดล ด้วยภาษา Python บน Cloud หรือ เครื่อง Server ขนาดใหญ่ ที่มี GPU ความเร็วสูง เมื่อเรียบร้อยแล้ว แล้วนำโมเดลนั้นมาแปลง Convert เพื่อไป Load ใช้งานบน Web Browser รัน JavaScript อีกทีหนึ่ง

สอนอ่านโมเดล Convolutional Neural Network ดู shape ของ Activation Map วิเคราะห์ Model Architecture – ConvNet ep.7

ในการเรียนรู้ สถาปัตยกรรม Deep Neural Network ออกแบบ Convolutional Neural Network การเลือกใช้ Layer ชนิดต่าง ๆ เลือก จำนวน Channel In/Out, ขนาด Kernel, Padding, Stride, etc. ว่าจะเปลี่ยนแปลง shape ของข้อมูลไปอย่างไร จนได้ผลลัพธ์ที่ต้องการ เป็น Output ออกจากโมเดล ถ้าเราสามารถรู้ถึง shape ข้อมูล Activation ที่ผ่านไปในแต่ละ Layer จะทำให้เราเข้าใจการทำงานของโมเดลได้ดีขึ้น ออกแบบ และ Debug โมเดล ได้ง่ายขึ้น

Data Block API สร้าง Data Pipeline สำหรับเทรน Machine Learning แบบ Supervised Learning – Preprocessing ep.5

ในการเทรน Machine Learning โดยเฉพาะแบบ Supervised Learning หรือข้อมูลมี Label นอกจากเรื่องการเทรน การออกแบบสถาปัตยกรรมของโมเดล ยังมีงานสำคัญอีกหลายที่ต้องทำก่อนที่เราจะเริ่มเทรนได้ หนึ่งในนั้นคือ สร้าง Data Pipeline จัดเตรียมข้อมูล

Convolutional Neural Network คืออะไร ภาษาไทย ตัวอย่างการทำงาน CNN, ConvNet กับชุดข้อมูล MNIST – ConvNet ep.1

ใน ep ที่แล้ว Neural Network ep.13 ที่เราได้สร้างโมเดล Deep Neural Network ที่ใช้ Linear Layer + ReLU Activation Function เราได้สร้าง Training Loop ที่มีความ Flexible จาก Callback ทำให้เราสามารถ Schedule Hyperparameter ได้ตามต้องการ แต่ไม่ว่าจะเทรนอย่างไร เราก็จำแนก MNIST ได้ Accuracy สูงสุดแค่ 97% เท่านั้น เนื่องจากข้อจำกัดของ Model Architecture แล้วเราจะแก้ปัญหานี้อย่างไรดี

AI จำแนกรูปภาพ หมา แมว 37 สายพันธุ์ ใช้ Pet Dataset เทรน Machine Learning สร้างโมเดล Deep Neural Network ด้วย Python – Image Classification ep.1

ใน ep นี้ เราจะมาเรียนรู้วิธีการใช้ Deep Learning โดยสร้างโมเดล Deep Neural Network ขึ้นมา แล้วเราป้อนข้อมูลให้ว่า รูปนี้ คือสายพันธุ์นี้ รูปนี้ คือสายพันธุ์นี้ รูปนี้ คือสายพันธุ์นี้ … แล้วให้โมเดลเรียนรู้ด้วยตัวเอง (Machine Learning) และจนสามารถทำนายสายพันธุ์ หมา และ แมว Image Classification จากรูป ที่โมเดลไม่เคยเห็นมาก่อนได้